Vibrato and automatic differentiation for high order derivatives and sensitivities of financial options

نویسندگان

  • Gilles Pagès
  • Olivier Pironneau
  • Guillaume Sall
چکیده

This paper deals with the computation of second or higher order greeks of financial securities. It combines two methods, Vibrato and automatic differentiation and compares with other methods. We show that this combined technique is faster than standard finite difference, more stable than automatic differentiation of second order derivatives and more general than Malliavin Calculus. We present a generic framework to compute any greeks and present several applications on different types of financial contracts: European and American options, multidimensional Basket Call and stochastic volatility models such as Heston’s model. We give also an algorithm to compute derivatives for the Longstaff-Schwartz Monte Carlo method for American options. We also extend automatic differentiation for second order derivatives of options with non-twice differentiable payoff.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Closed formulas for the price and sensitivities of European options under a double exponential jump diffusion model

We derive closed formulas for the prices of European options andtheir sensitivities when the underlying asset follows a double-exponentialjump diffusion model, as considered by S. Kou in 2002. This author hasderived the option price by making use of double series where each termrequires the computation of a sequence of special functions, such thatthe implementation remains difficult for a large...

متن کامل

Mini-symposium on automatic differentiation and its applications in the financial industry

Automatic differentiation has been involved for long in applied mathematics as an alternative to finite difference to improve the accuracy of numerical computation of derivatives. Each time a numerical minimization is involved, automatic differentiation can be used. In between formal derivation and standard numerical schemes, this approach is based on software solutions applying mechanically th...

متن کامل

Monte Carlo evaluation of sensitivities in computational finance

In computational finance, Monte Carlo simulation is used to compute the correct prices for financial options. More important, however, is the ability to compute the so-called “Greeks”, the first and second order derivatives of the prices with respect to input parameters such as the current asset price, interest rate and level of volatility. This paper discusses the three main approaches to comp...

متن کامل

A new approach to using the cubic B-spline functions to solve the Black-Scholes equation

Nowadays, options are common financial derivatives. For this reason, by increase of applications for these financial derivatives, the problem of options pricing is one of the most important economic issues. With the development of stochastic models, the need for randomly computational methods caused the generation of a new field called financial engineering. In the financial engineering the pre...

متن کامل

European and American put valuation via a high-order semi-discretization scheme

Put options are commonly used in the stock market to protect against the decline of the price of a stock below a specified price. On the other hand, finite difference approach is a well-known and well-resulted numerical scheme for financial differential equations. As such in this work, a new spatial discretization based on finite difference semi-discretization procedure with high order of accur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1606.06143  شماره 

صفحات  -

تاریخ انتشار 2016